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Similarly when D is Da - Df 2 Or Dt we have I'D & IODIO 3
but T'D" need not be equivalent to these, since the first deletion

For example, the

might "confuse" the ages of the remaining elements.

reader should have little difficulty constructing R functions which

* * ¥
are I Dl insensitive but not I Dl insensitive.




0. Necessary and Sufficient Conditions.

We can make further progress in understanding deletion insensitivity
if we convert the definitions into properties of the R function. Let
By be the set of all permutations on n elements; and if x 1is such a
permutation, let Xy be its k-th element, from left to right, for

I1<k<n. If xePn and yePn_l, we write

[x\J = ¥]
for the function of x, j, and y which is 1 if R(x\Jj) =¥ ,
otherwise O . In terms of this notation, the following lemma is an

immediate consequence of the definitions:

Lemma 2. M R funection is

; (a) I*Dr insensitive if and only if P x\j = y] = n® 5 Tor all
XxeP
I<j<n
yePn_l and n>1;

(v) I*Do insensitive if and only if 2 [x\j =y] = n, for all

xeP
n

&1
"3 yePn_l and @ > § > 1 3 ;
i
z-{ (e) 1D insensitive if and only if > [x\l1=y] = n, for all
| % 1 xeP
B n
F :
‘ Yel, and n >1; ’
5

(d) 1°D, insensitive if and only if T [x\g =y] = n, for all

yeP 5 and n >k >13
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n ., for all

*
(e) 1 D. insensitive if and only if 2 [x\x, = y)
XeP
n

y'ePh_l and e >1 3
(£) I*Dz insensitive if and only if ¥ [x\x, =y] = n, for all
xeP
n

yel and Rn>1l. 0B

n-1

Clearly (b) = (c), (d) = (e) and (f), and (b) or (d) = (a), as we already
knew. Furthermore it is easy to see that these are the only implications
between the six types; we might have (e) and (f) and (c) but not (a), etec.

The next result is less obvious, possibly even surprising, since it
states that a comparatively weak form of deletion insensitivity is

equivalent to a comparatively strong property.
Theorem 1. I'D_ e T DI\ e (L 4D )* .
—_— o s s A

Proof. i S t only show that I.D I.= 1"
roof. ince (Ir’Dr) = I.D I , we must only show hat I DI = T D

* *
and IDoa(Ir,Dr) .

Assume first that a given R function is I:DrI: deletion insensitive,
and consider the sequence of operations I:Drlr for some fixed n . Any

of the ne(n+l)! equally probable realizations of such operations defines
a sequence of permutations TyreeesTin such that p(ﬂn+2) is a
uniformly distributed permutation on {1,2,...,n} ; hence every possible
permutation p(nn+2) occurs n(n+l) times. Let p(nn+2) = ¥p e Y1y
and T . = yi... ﬁ_lyﬁ s where Yy = Jj » and suppose that t is the
element missing from yi... yﬁ » where 1 <t <n+l ; then ¥y = y{ or

yi-l according as yi <% or yi >t ., The number of ways to obtain

p(Mep) = ¥y eeeVpq¥y 30
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b L Ix\(t-) = ply, see ¥, 4)) } + Z Bt =ply,seey, o))
1<t <ntl XeP 1 n-l XeP 3 Rl
ts]

L [E\te=ply;eeey, )1+ Z [2\j= oy, .. ]
% B, e =1 XN = p(yy eee¥yg)

1<t <n

2
il [x\J = gly, ssey. )]
xe.Rn PY1 n-1

by Lemma 2(a), since R is I*Dr deletion insensitive; and this equals
n(n+tl) by assumption. Therefore R is I*DO deletion insensitive by
Lemma 2(b).

Now acssume that a given R function is I*Do deletion insensitive,
and concider any given sequence of operations Al(ul), sk Am+n(um+n)
corresponding to n I, 's and m Dr's, where there are respectively
di,...,d& elements present before the deletions., Any of the n!ii ...dﬁ
equally probable realizations of such operations defines a sequence of
permutations Tpewes o s where the keys inserted are {1,2,...,n} in
csome order, and we wish to prove that each of the (n-m)! possible values
of plr...) oeours nidl ...dﬁ/(n-m): times. Let z;,...,z  be the

mn XL

elements deleted, so that MnZl et 4y 1S @ permutation of the n

elements inserted. We will prove that each of these n! permutations

po—- ' [ s
occurs exactly dl"' dm times.

In order to avoid cumbersom notations, a single example should suffice

to explain the basic idea. Suppose the sequence is

L Ly Ip Tp T Dp 10 D D I Ty

\
)




sothat n=8, m=3%, didédé =55L , and suppose we want to count
how many realizations will yield w1y, =5 1637 eand 212223 =82k .,
Working backwards, we must have n9 =0 L6, n8 = a permutation on
{1,4,5,6} such that ng\h =7y, W =a permutation X Xp Xz X) Xg

on {1,2,45,6} such that n7\2 = g, and T = a permutation on
{xl,xz,xs,xh,B} such that ns\a = XX By Lemma 2(b) the
number ot choices for 13 is L4 , and for each g there are 5
suitable mF'S’ and for each n7 there are 5 suitable ns '8,

hence there are didé ' solutions, It should be clear that this

method of proof is completely general. (O

This completes a characterization of deletion insensitivity
involving Dr ’ Do , and Dq : We have three classes

* * * *__*
(Io,Dr) » IDX = 10 #1950

* * * *_* * * *
(IO,DO) & IDE, » IB, '®» ID » IDI = (Ir,Dr)

(1,D * *__* *
I, q) ® ID by © LD, ® I D

S

B * * * * 4 ’
and (I,,D,)" » (Ir,Dq) i e I°  are impossible.
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T Age-sensitive Deletions.

Let us now consider Da more closely.

Theorem 2. An R function is I:DaI: deletion insensitive if and only

if, for 1 < j;k<n and all y’efh_l , there exists a unique xe Pn

such that x = Jj and R(xX\j) = vy .

Assume first that a given R function is I:DaI: deletion insensitive,
and consider the sequence of operations I?Dalr for some fixed n , where
the deletion operation removes the k-th element inserted. Any of the
(n+1)! equally probable realizations of such operations defines a sequence

of permutations such that p(nn+2) is a uniformly distributed

R esnsBos

permutation on {1,2,...,n} , hence every possible permutation p(ﬂn+2)

occurs n+l times. Now argue as in Theorem 1 with the extra restriction

that xe¢ Pn is such that X is the element being deleted; using

Lemma 2(d) we find that the number of ways to obtain p(nn+2) =¥y ooV, 1Y,
is

n+ Z [x\]-= (yl ces n-l)]

XeP
n
X =4

when y = Jj » hence the condition in Theorem 2 is necessary.
Conversely, assume that the stated condition holds, and consider a
given sequence of operations IﬁDaI:-p where Da deletes the k-th element

with

inserted. For example, the squence might be IrIrIrIrIrDaIrIr

n=7,p=5, and k =4 . The number of realizations which yield
ng =3 14572 1is the number of permutations x of {1,3,4,5,6} such

that x) = 6 and x\6 = 3145 ; and by hypothesis there is just one

such x . There are seven choices of mg with p(n8) =314562 , and

e ——
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each such choice occurs once, This argument clearly generalizes to

*_ %
prove that R 1is IrDaIr deletion insensitive, [

* * *
Corollary. I.DI. = (Ir’ Dr) .
Proof. The condition of Theorem 2 is much stronger than the condition
*
for I D, in Lemma 2(b), since the latter requires only that the equation
R(x\J) = y have exactly n solutions when j and y are given. Now

apply Theorem L. [J

The condition of Theorem 2 is not strong enough to prove (Ir’ Da)R
insensitivity, which seems to be very strong property indeed. The author
*
has been unable to construct any R functions which are (Ir’ Da)

insensitive except those which satisfy the following strong requirement:

Condition Q. For each 1 <k <n there exists a permutation 9y ee+ Q7

of {l,...,k-1,ktl,...,n} such that R(xlxe...xn\xk) = p(qu...an-l) .

In other words, deletion of the k-th element inserted will permute the

other elements in a way depending only on k , not on their values.

This condition may not be necessary, but it is at least sufficient

to prove what we want:

*
Theorem 3., An R function which satisfies Condition Q is (Ir’ Da)

deletion insensitive,

Proof. Consider the operation sequence

Tp e Iy Ly T Dy T D Dy T Ty

where the three Da 's respectively have k =2, 3, 4 , and let us count

how many realizations will yield Ty = 51637 after deleting the elements

2k




82L4 in this order. Suppose the eight insertions are 292025 2), 25 25 % 2g

respectively, a permutation of {1,2,...,8} ; we will show that the z's are
uniquely determined by these assumptions. For concreteness, let us

suppose that some of the permutations implied by Condition Q are
xlx2x3xhx,5\x2 = %X XoX) 5 xlxe)%xhxs\xh = x2x5)%xl ,» and

xlx2x5xh\x2 = %X X) . Then we know that T = 202523225 5 Zp = 8,

N = Z3ZqZoZ) 5 TG = ZzZyZ5Z)Zg 2y = 2, mng= 21262525 1 Zg = Lok

g = ZgZyZz 5 Ty = Z5ZyZzloZg = 51637 3 hence Zq eee 2g = 1862543 17.

This argument clearly generalizes to prove the theorem, since there is
always a unique realization for each choice of Ttn and the sequence

of elements deleted, for each choice of k's in the Da operations. (O

There is an interesting way to weaken Condition Q to obtain a somewhat
weaker kind of deletion insensitivity, yet one which is stronger than that

of Lemma 2(d):

Condition Qu* For each 1 <k <n there exists a sequence of n permutations

(ql’lcoo ql,n—l)’ eeoe ) (qn)l... qn.’n_l) Of {l’l.o,k"l,k+l’...’n} With
the following property: For all yePn_l there exists a permutation

py eee P, Of {1,...,n} , possibly depending on y , such that

p(xl cee xk-l )(-1(_'_1 coe xn) =Y and )Lk = j inrplies

eee X .

R(xl...xn\xk) = p(x

)
» 1 yn-1
% %,

In other words, when we delete the k-th element inserted the result is
one of n specified permutations of the remaining elements; and if the
remaining elements are held fixed, while X, Truns through all n possible

values relative to them, the results run through these n specified




permutations in some order. Condition Q implies Condition Qb 5 Since

the n specified permutations might be identical.

This rather peculiar condition seems to be just what is needed to

prove the following slightly weakened form of Theorem 3.

Theorem L. An R function which satisfies Condition Q is (IO,Da)’

deletion insensitive,

Proof. As in the previous proofs, it is mcst convenient to consider a
more~or-less random example which is sufficiently general to be convincing
without the introduction of elaborate notation. Consider the operation
sequence

IoIoIoIoIoDanDaDanIo

where the three D 's have k=2, 4, 4 , respectively. There are

1e2e%elhe5.5ehe5 realizations of this sequence; we will show that 5.5.k4

of them will yield any given value of p(ﬂll) . For example, suppose

p(nll) =31425 , There are 5 choices for the g-permutation in the

first deletion; let us choose one of these, and assume for example that
= . — £ - ololotol _

the deletion takes “5 = ZlZ2ZBZhZS into T = ZIZEZBZh = ZBZlZ5zh .

In other words, one of the g-permutations for n =5 and k=2 is

assumed to be 3154 , (If 3154 occurs as two or more of the

g-permutations we also choose the subscript j such that

(3,1,5,4) = (qj,l’qj,e’qj,5’qj,h) ; thus, there are 5 distinct choices

poccible even when the g-permutations are not distinct.) Then if

n1 = zizezézﬂzé we must delete the L-th oldest element, which is zé

(cince it equalc Zg ); again we have 5 q-permutations to choose Irom,

and let uc suppose that the g-permutation for the second deletion yields

26
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;

ZMopNatnt ) T
g = ul 2525 2), = ZthZBZz 3 we similarly shall choose one of the L

g-permutations now available for the last deletion and suppose that it
yields ng = zi’_'zg'zg' = 2z zi;zi‘_ .

To make p(nn) = 31425 we now can work backwards and identify
the relative sizes of various elements: Since p(rt9) =213% , we know
that p(z.’l"zsz"',) =321 . This value of y together with Condition Q_

"

allows us to determine p(:r8) » since each possible value of 23 relative
to z'J'_ ) z2 ) zh corresponds to one of the predetermined choices of
g-permutation once p(Zl 22h> is known. In our case p(!t8) must be
4312 , 4321 , 4231 , or 3241 , and our choice of g-permutation
subscript tells us which of these occurs, say 4231 ; then

p(Zi z5 2, zs') =21L43 and we can similarly reconstruct p(rl.?) , which
might be 21354 , In the same way p(1t6) = 2134 implies that
p(zlzjzhzs) = 1243 ; and we can use this knowledge to find p(ns) .

say 21354 ., Each Io insertion has now been characterized, thus each

of our 5¢5¢4% choices has led to a unique realization such that

o(ny) =31k25 . O

Although Io is a somewhat artificial type of random insertion,
Theorem 4 is interesting because (Io, Da.)* insensitivity implies I*D;
insensitivity, and this special case is not artificial.

Let us conclude our theoretical investigations by considering
briefly the fifo and lifo deletion types, Df and Dl « J1f the R
function satisfies

R(%) X5 00 x \ %) = p(X5 000 %))
it ic obviously (Ir,Df.)' insensitive; note that this condition might

hold even though neither Condition Q nor Qo are satisfied, in fact the
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weak condition of Lemma 2 (a) might not even hold. On the other hand

when the R function does not satisfy the above formula, there appear

* ¥
to be no interesting conditions which guarantee I Df insensitivity,

other than the condition Qo we have already discussed. (We might have,

say, R(xlx2 oo xn\xl) = p(i% XX eee xn) and R(xl Xp eee xn\xe) =
*

p(xlx3 aets xn) ; these conditions lead to (Ir,Df.) insensitivity

without the full generality of Condition Q, but they don't seem to be

very interesting.) Essentially the same remarks hold also for lifo-

deletions, if R does or does not satisfy

R(xl seoe xn_l Xn\ Xn) = p(xl se e xn-l) .

§
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Oe Applications.

Let us finally apply these theorems to some important data organizations.
Sorted and unsorted linear lists have every possible type of insensitivity
to deletions, but this is obvious without the above theory.

Binary search trees provide what is perhaps the most interesting
application. We have already mentioned that Hibbard [3] originated this
theory by essentially proving that the R function defined in Section 2
above is I*Dr insensitive. Knuth [7, answer to exercise 6.2.2-13]
observed that it is in fact I*Da insensitive, and then Knott [6] went
much further, proving that Hibbard's R function is (IO, Da)* insensitive.
In particular, if we do n random insertions, followed by m < n fifo-
deletions, the resulting tree has the shape distribution of a binary tree
after n-m random insertions. This is a difficult theorem to prove,
perhaps the "deepest" result about a data structure which had been obtained
by anyone before 1975.

It is possible to establish Knott's theorem using the above theory;
in fact, much of that theory was motivated by what he did. We want to
chow that the binary search tree organization satisfies Condition Qo'

Let k <n be given, and for 1 < { <n let

loco(k-l)(k+l)ooon b if lsk ;

q eee J - =
f1 £,n-1 looo (k=1)£(k*t1) ouu (£=1)(£41) veun , if £ >k .

Let y = Yyeee¥p1€ Pn be given, and let Z) eee 2.1 be the inverse

permutation, so that Yo = J » It is not difficult to verify that

J
Condition Q holds with the permutation defined by

Z. 9 z'j <K
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Thus binary search trees are (IO, Da)* insensitive to deletions
using Hibbard's method. On the other hand we have seen that they are
not (Ir’ Dr)* insensitive, so by Theorem 1 they are not even I*DO
insensitive.

Suppose we define deletion in a different way, essentially by
interchanging left and right in Hibbard's method: Let
R(xlxg... xn\J') = p(Xl... X1 Kepq v xn) or p(xl... X, 1 Xpep oo xn)
where X, = Jd g = =J-1 if j > 1 , and where X is deleted if

£
j=1 or £ <k, otherwise X, is deleted. (For example, this changes
R(L32\1), R(312\3) to 21 and R(213\2),R(231\2) to 12 in the
table of Section 2.) This function is (Io, Da)* insensitive to deletions,
and it also satisfies Lemma 2(c) so it is (I, Dq)* insensitive as well.
Furthermore, like Hibbard's function it possesses (Ir’ Dl)* insensitivity.
We can also verify (Ib, Dq’Dl)* insensitivity, if the I‘b insertions
are biased by the most recent Dq (not Dl ) deletion. (Is it
» p,)" insensitive in this sense?)
Jean Vuillemin [8] has recently defined a useful type of data

(Ib, D

organization which he calls binomial gueues, and Mark Brown (2] has shown

that they are highly insensitive to deletions. In fact, Brown proved that
the corresponding R function satisfies Condition Q hence it is (Ir, Da)*
and (Ir,Dr)* insensitive.

The leftist tree structures developed in 1971 by Clark Crane (see
[7, Section 5.2.3]) unfortunately do not share such nice properties, In
fact, the corresponding function R(xl X5 )Qs X), \J) has a pronounced bias
towards %21 and 231 except when j =1, and the function
R(xl %o X X), Xg \1l) is extremely biased. Therefore leftist trees are quite
censitive to deletions, and it will probably be very difficult to analyze
them. In fact, the analysis for pure incertions is already very formidable.

Cimilar remarks apply to balanced trees.

30
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9. Degeneracy.
We have defined deletion insensitivity only in terms of the R

y function, but when many different permutations lead to the same data

f : structure (i.e., if they yield the same S value) it might be possible
i to have deletion insensitivity that cannot be carried back to any R
function for the organization. For example, when the data structure

consists of a sorted linear list, the S function is essentially constant,

so we trivially have (Ir,Do)* insensitivity; but we have observed that

no R function can have this property.

E i
E In other words the conditions we have derived in Theorems 1 and 2

are sufficient but not necessarily necessary for insensitivity. An example

2 % : : : ¥ ¥ e
can be given of a data organization which is IrDrIr insensitive when

the S equivalences are considered, yet it is not I*Do insensitive:

Let R(xl... xn\xk) = p(xl... X 1 ¥y o xn) for n 43,
R(Xlxg)%\l) =12, R(X1X2%\2) =21, R(123\3) = R(132\3)

T T

R(231\3) = 12,

T

]

R(213\3) = R(312\3) = R(321\3) = 21 ; and let S(xl... xn) S(yl...yn)

if and only if Xq eeo xn = yl... yn or n >3 and xh... xn Yy, eee ¥y
and  8(p(x%y%;5)) = 8(p(yy¥,¥5)) , where 5(132) = 5(231) and
S(312) = s(321) . The operations I IIDq leave a nonrandom result;

but I?DrI? clearly produces a random structure when n # 3 , and this

can be verified also for n =3 . Thus Theorem 1 is not true when we

o

take the S equivalences into account.

It appears unlikely that any conditions weaker than those discussed
in the above lemmas and theorems will be useful for proving deletion
insensitivity in practice. Furthermore it is not difficult to see that
the existence of an R function satisfying the six respective conditions
in Lemma 2 is, in fact, both necessary and sufficient for the six
corresponding kinds of 1D insensitivity. (We proved this for I*Dr in

Section 3,)
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